Printed Pages - 13

320453 (20)

BE (4th Semester) Examination, Nov-Dec 2021

Branch : Civil

SURVEYING - II (NEW)

Time Allowed : Three Hours Maximum Marks : 80 Minimum Pass Marks : 28

Note : Answer all units. Part (a) of all units is compulsory

(2 marks). Attempt any two questions from b, c or

d of all units. (2 × 7 = 14 marks).

Unit-I

Q. 1. (a) (1) Distance of visible horizon for a point

having an elevation of 637.5 m is : 2

(i) 6.735 km

320453 (20)

P.T.O.

(ii) 67.35 km

(iii) 10 km

(iv) 100 km.

(2) Phase correction is done on :

(i) Pole signals

(ii) Beacons

(iii) Cylindrical signals

(b) What is meant by a satellite station and

reduction to centre ? Derive expression for

reducing the angles measured at the satellite

7

stations to centre (one case).

(c) The altitudes of two proposed stations A and

B, 80 km apart are respectively 225 m and

550 m. The intervening obstructions situated

at C, 40 km from A has an elevation of 285

m. Ascertain if A and B are intervisible, and if

necessary, find by how much B should be

raised so that the line of sight must nowhere

be less than 3 m above the surface of the

ground.

7

F .O.

(d) A steel tape is 30 m long at a temperature of

20°C when lying horizontally on the ground.

Its sectional area is 0.082 sq.cm, its mass 2

1°C. The tape is stretched over three equal

spans. Calculate actual length between the

end graduations under the following

conditions : temperature 40°C, pull 180 N.

Take E = 2.07 × 107 N/cm². 7

Unit-II

Q. 2. (a) Errors in horizontal angle measurements

due to eccentricity of signal is completely

eliminated by : 2

(i) Repetition method

(ii) Reiteration method

- (iii) Direction method
- (iv) None of the above

(b) The following angles were measured at a

station O so as to close the horizon :

7

P.T.O.

∠AOB = 83°42'28".75 weight 3

∠BOC = 102°15'43".26 weight 2

∠COD = 94°38'27".22 weight 4

∠DOA = 79°23'23".77 weight 2. Adjust the

angles.

(c) The following are the measured values of

equal weight for two connected triangles

ACD and BCD (Figure).

320453 (20)

Adjust the values of the angles.

7

(d) The following round of angles was observed

from central station to the surrounding

stations of a triangulation survey : 7

A = 93°43'22" weight 3

B = 74°32'39" weight 2

C = 101°13'44" weight 2

D = 90°29'50" weight 3

In addition, one angle $(\overline{A} + \overline{B})$ was measured

separately as combined angle with a mean

value of 168°16'06" (wt. 2).

Determine the most probable values of the

angles A, B, C and D.

320453 (20)

P.T.O.

Unit-III

- Q. 3. (a) Discuss the theory of anallatic lens. 2
 - (b) A tacheometer was set up at station 'A' and
 - the following readings were obtained on a

vertically held staff.

Staff	Vertical	Hair readings	Remarks
station	Angle		
B.M.	-2°18'	3.225, 3.550,	R.L. of B.M.
		3.875	
a tagi la			
В	+8°36'	1.650, 2.515,	=425.515 m
1. 201		3.380	25

Calculate the horizontal distance from A to B

and the R.L. of B if the constants of the

7

instruments are 100 and 0.4.

320453 (20)

Station

(c) To find the RL of station B, two observations

are taken by a theodolite from station A - one

to a BM and the other to the station B. The

records are as follows :

Find the RL of B, and the distance between

the BM and station B.

Inst. Station	Staff.	Target	Vertical angle	Staff reading	Remark
A	BM	Lower	- 10 ⁰ 0'	0.655	RL of BM = 510.500 m
A	enit erit B	Upper Lower Upper	- 7 ⁰ 0' - 5 ⁰ 0' + 4 ⁰ 0'	2.655 1.250 3.200	

(d) Two points A and B are on opposite sides of

a summit. The tacheometer was set up at P

P.T.O.

7

on top of the summit, and the following

readings were taken : 7

Inst. Station	Height of Inst.	Staff station	Vertical angle	Hair readings	Remark
Р	1.500	A	- 10 ⁰ 0'	1.150, 2.050, 2.950	RL of P = 450.500 m
Р	1.500	В	- 12º0'	0.855, 1.605, 2.355	

The tacheometer is fitted with an anallatic

lens, the multiplying constant being 100. The

staff was held normal to the line of sight.

Find :

(i) The distance between A and B, and

(ii) The gradients of lines PA and PB.

320453 (20)

(10)

-17

Unit-IV

Q. 4. (a) Write the expression for length of line

between two stations of different elevations

as from an aerial photograph ? 2

(b) Prove that ratio of Tilt Displacement of a

point not on the principal line to that of a point

on a principal line = Secant of angle at

isocentre from principal line to the point. 7

(c) Derive an expression for scale of a tilted

photograph. 7

(d) Explain the calculation of amount of relief

displacement ?

7

P.T.O.

(12)

Unit-V

- Q. 5. (a) Give some examples of the applications of
 - 'hydrographic surveying' ? 2
 - (b) What is meant by sounding ? Explain the
 - method of observation of sounding from a
 - sounding boat, case Ranging and one angle
 - from the boat ? 7
 - (c) Explain the various equipments used for
 - taking soundings ? 7
 - (d) An observer taking soundings from a boat
 - wished to locate his position P. He measures
 - an angle to A and B, AP at right angles to AB.

If the measured angle APB is 29° and

distance AB is 550 m, calculate the boat

position from A ?

7